
Condensation of Energy in Two Dimensional Turbulence

Turbulence is a state of spatio-temporal disorder
characteristic of energetic fluid flows. Occuring in a
wide variety of situations, it plays an essential role
in various physical and industrial problems. Atmo-
spheric science, aeronautics, oceanography and as-
trophysics provide obvious examples. Inviscid in-
variants play a key role in understanding the physics
of turbulence. An inviscid invariant is a quantity con-
served by the the Navier–Stokes (N–S) equations in
the absence of forcing and damping. Kinetic energy,
E = 1

2 |~u|
2, is an example, where~u(~x, t) is the fluid

velocity. For three dimensional (3D) turbulence it is
the principle invariant for most applications.

From a statistical physics perspective, turbulence
should be thought of in terms of the transport of in-
viscid invariants between different scales. Invariants
are typically injected and dissipated at very differ-
ent scales. Viscosity dissipates efficiently at very
small scales while external friction acts mainly at
large scales. Nonlinear interactions transport invis-
cid invariants from the source scale to the dissipation
scale, a process referred to as a cascade. In 3D tur-
bulence, energy cascades from large scales to small
to be dissipated by viscosity. A constantly forced
flow reaches a stationary state with energy injection
balanced by energy dissipation. There is no detailed
balance. Rather there is a range of scales, known as
an inertial range, between the forcing and dissipation
scales through which an energy flux flows.

The two-dimensional (2D) N–S equations have
additional invariants, foremost among which is the
enstrophy,H = |∇×~u|2. They modify the physics
considerably. Most importantly, in 2D flows, non-
linear interactions transfer energy primarily from the
forcing scale tolarger scales where it is ultimately
dissipated by external friction while the enstrophy
goes to small scales to be removed by viscosity. En-
ergy flow to larger scales is called an inverse cascade
while enstrophy flow to small scales is called a direct
cascade. In 1967, Kraichnan made dimensional pre-
dictions for the energy spectrum,E(k), in the station-
ary state where the fluxes of energy and enstrophy in
the respective inertial ranges, denoted byε andη, are
constant. In the direct cascade,E(k)∼ η

2
3 k−3. In the

inverse cascade,E(k) ∼ ε
2
3 k−

5
3 . By transporting en-
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Figure 1:E(k) as a function of time.

ergy from incoherent small scales to larger scales, in-
verse cascades facilitate the formation of large scale
coherent structures.

In most studies of the 2D inverse cascade, the size
of the largest vortices is limited by external friction.
As a vortex grows, the drag on the fluid layer in-
creases until it eventually balances the energy flux
carried by the inverse cascade and the vortex cannot
grow further. If, however, the external drag is de-
creased sufficiently or removed entirely then vortices
continue growing until they reach the system size.
This is the box size in a simulation or the container
size in the laboratory. In this situation, the inverse
cascade cannot proceed further resulting in accumu-
lation or “condensation” of energy at large scales.
We performed a series of numerical experiments to
investigate this effect. Such finite size effects provide
a mechanism for strongly enhancing the stability and
coherence of large scale structures in 2D turbulence.
In fact turbulence can be entirely suppressed at the
largest scales resulting in a large scale flow which is
smooth and effectively deterministic.

Fig. 1 shows the energy spectrum,E(k), as a func-
tion of time in the absence of external friction. At
early times, it scales ask−

5
3 as expected from Kraich-

nan’s theory. When the inverse cascade reaches the
system size, without large scale friction to provide
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Figure 2: Vortex dipole resulting from energy con-
densation.

dissipation, energy accumulates at large scales. The
spectrum slowly crosses over tok−3, characteristic of
smooth large scale flow. The late time vorticity field
is shown in Fig. 2. Clearly the effect of the accumu-
lation is to produce a very intense vortex dipole.

Once the large scale dipole emerges it is very sta-
ble. If the dissipation is entirely absent, the ampli-
tude of the vortices continues to grow indefinitely
at a rate proportional to

√
t. This is expected given

that the total enstrophy of the system grows linearly
in time (constant injection). If there is some small
amount of dissipation present, then the growth even-
tually saturates. Small scale fluctuations produced
by the forcing remain in the system. As the ampli-
tude of the condensate grows, however, it comes to
completely dominate the fluctuating part so that at
large scales, the flow no longer appears turbulent.
In this regime, one can easily use a wavelet trans-
form to split the vorticity into coherent and fluctuat-
ing components. Once finds that the coherent dipole
accounts for up to 99% of the total energy of the flow
at late times. It is well known from studies of decay-
ing turbulence that coherent vortices tend to produce
steeper spectra. This is true in this case also. Thek−3

spectrum which replaces the Kraichnan spectrum af-
ter condensation occurs is entirely due to the vortex
dipole. See Fig. 3 which compares the spectra of
the total, coherent and fluctuating flows. Interest-
ingly, the fluctuations have ak−1 spectrum which
suggests that, in the presence of a strongly devel-
oped condensate, the small scale vorticity tends to
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Figure 3: Spectra of the coherent and fluctuating
components after condensation.

be passively advected by the large scale flow. Fur-
thermore, as the coherent flow strengthens, the r.m.s.
background vorticity fluctuation decreases in abso-
lute terms. Thus the large scale coherent structures
really suppress small scale turbulence.

The spatial structure of the vortices is such that
the vorticity seems to decrease as a power law with
distance from the vortex centre. The exponent is ap-
proximately 1.25, a number which currently lacks
a convincing theoretical explanation. This vortic-
ity profile is robust, growing self-similarly in time,
with very little fluctuation. We are presently explor-
ing how these results may be relevant to quasi-2D
systems of more practical relevant such as the quasi-
geostrophic equation in atmospheric science or the
Hasegawa-Mima equation in plasma physics which
are structurally and phenomenological similar to 2D
hydrodynamics.
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